REGULARIZED NUMERICAL SOLUTION OF
NONLINEAR INVERSE HEAT-CONDUCTION PROBLEM

O, M. Alifanov and E. A, Artyukhin UDC 536.24.01

The construction of an algorithm for a numerical solution of the nonlinear inverse problem
is discussed for the case of a generalized one-dimensional heat-conduction equation in a
region with moving boundaries. The algorithm is regularized in the Tikhonov manner.

In experimental studies of a variety of unsteady thermal processes, in studies of heat strength, and
in various thermal tests it is necessary to construct the temperature field within the object and to deter-
mine the thermal boundary conditions from temperature measurements within the object (this is the in-
verse heat-conduction problem).

This problem is known to be "incorrectly formulated"; i.e., the desired results are generally not
continuous functions of the input temperatures. This feature of the inverse heat-conduction problem is
the main difficulty involved in solving it; as a result of this feature, direct methods do not give stable
approximations of the desired functions with small time steps in the integration [1]. If the time steps
are made larger, the results may become very inaccurate.

Regularized algorithms for solving linear, one-dimensional, inverse heat-conduction problems,
which impose no restrictions on the size of the time integration step, were worked out in [2,3]. If the
thermal processes are very intense and last for a long time, the formulation of the inverse problems
generally becomes very complicated. It becomes necessary to take into account the changes in the ther-
mal properties of the material with the temperature, and in several cases it is necessary to choose a
heat-conduction model with internal heat and mass sources and with the motion of a liquid or gas through
pores inthe object. Here the boundaries of the object can move during the heating. A typical example of
this model is the operation of a composite heat-shielding material under conditions of heat damage in the
interior and removal of material.

In the present paper we propose a method for obtaining stable solutions of the nonlinear inverse
problem for a generalized one-dimensional heat-conduction equation corresponding to heat transfer ina
porous object with internal heat and mass evolution., The problem is treated in a region with moving boun-
daries, described by the functions X; () and X,{). The boundary motion can be caused by a linear re-
moval of material or by thermal or mechanical deformation of the object., This method is based ona
regularization by the Tikhonov method of an implicit difference scheme for integrating the heat-conduction
equation along the direction of the spatial coordinate [4].

Mathematically, the problem is formulated as the problem of the spatial continuation of the solution
of the heat~conduction equation, from the boundary X,{), at which Cauchy's conditions are specified fthe
heat flux g,() and the temperature £{)], to the boundary X; ¢). If the temperature is measured within the
object, and if some boundary condition is known at the right-hand end of the region, then it is first neces-
sary to solve the boundary-value problem in the region between the point at which the measurements are
made and the right-hand boundary., Then we can obtain the formulation of the inverse heat-conduction
problem with which we are concerned [4].

Our problem is thus to determine the function Ty, () from the conditions
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We introduce the difference grid w = {Ei =hj, i=0,1, ..., iy Ty = AT§, j=0, 1, ..., m}, Alifanov et
al. [4] have shown that when an implicit approximation scheme is used it is necessary to solve, at each

i-th spatial layer § =n— 2, n— 3, ..., 0), a system of nonlinear algebraic equations:

T} =g,
AT 4 BT+ DT =Fl, j=1,2, ..., m—1,
TP =TI 447,
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Here uim and uim are governed by the condition imposed on the solution at 1 =r,,. For example, with an

a priori specification of the second derivative, i.e., [0*Tj(ry)/07%] =Cy=const, i=n—1, n— 2, ,

it can be shown that we have
wr o A =DF  m I —ATCAT
247 + B’ 247 + B

i = ’

m
where Aj ", Bim, D;n, F:n are determined from Egs. (12) with j = m,

ooy 0,

(13)

For small time steps Ar and if the function f(r) is specified with some error, the "conditionality"
of the matrix of system (12) is poor, and the problem of determining the solution of the system is an in-

correct problem in the Hadamard sense [6],
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Fig. 1. Results of the solu-
tion of the model problem,
Solid curve) ‘exact numerical
problem, 1) Ty (r) according
to the exact input temperatures
with ¢ = 0; 2) perturbed in-
put data, Afj = +0.05 fmax,
i=1, 2, ..., m; 3) Tyl
according to the perturbed
data with @ = 0; 4) Ty @) ob-
tained by the regularization
method with & = g .

a4, 417 e =

To construct a stable algorithm for solving problem (12), we
can use the regularization method of [7]. We write the Tikhonov
functional in the form
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where « is the regularization parameter, and k; > 0 and ky > 0 are
certain nonnegative numbers,

Minimizing (14) with respect to all the T}, j =1, 2, ..., m,
1

we find a system of nonlinear algebraic equations with a symmetric,
five-diagonal, positive-definite matrix:
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Here the temperature Tf =y is assumed known quite accurately, since ina real experiment it is fre-
quently possible to arrange a constant initial temperature distribution and to determine it accurately.
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The solution of system (15) yields the regularized desired function for a fixed parameter . Problem
(15) should be solved by the square-root method,

The optimum approximation can be chosen by the quasioptimum-parameter method of [8] (aj+; =
nwi, * > 0)., Here we choose an effective value of the parameter which is constant for alli, i =n— 2,
n—3, ..., 0:
m[in {m?x 1T o —Th 1) 16)

If we know the error with which the input data are specified,
1
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J ’
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where o; is the mean square error of the function f(r) for r = 7, then a better approximation can be found
by using the discrepancy principle of [9]:

m L
[ 2 @h—pp]F —s=0. a7
j=1

Here T{l, j=1, 2, ..., m, is the solution of the direct heat-conduction problem in the region {#; = ¢ = 1,
0 <7 = 7y, under condition (11) at the right-hand boundary of the object and with a known temperature
T], j=1, 2, ..., m, at the left-hand end of the region at £ = §;, The values of T% are found by solving
system (15) :

Using condition (17), we can either choose the regularization parameter at each spatial step or
choose an effective value of the parameter for the entire region or for the various parts of the region,

Condition (17) can be used to construct an algorithm for automatically seeking the parameter o.
For this purpose we consider, instead of Eq. (17), the relation
1

Flp) = [2(7’4)2] T 5i=0,p=- 18)

for which we use the Newton iterative method [10]
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where the derivative F'{p) is determined numerically:

1 F o+ Ba) — F (@ — Aa)

F (p) =
P o .

This algorithm for solving the inverse problem has been incorporated in an ALGOL program for a
BESM-6 computer. The results calculated for one model example are shown in Fig. 1. We treated the
problem of determining the temperature of the outer surface of an unbounded plate of thickness b =1 with
constant thermal properties:

CT)=n(T) =1, b(T) = (T) = 0.

The plate with fixed boundaries is heated at its outer side by heat conduction at a rate g;(r) = 1; the other
surface (g, = 0) is insulated [11].

The temperature at the outer surface, Ty(r), reconstructed on the basis of exact input data (grid of
nXm =50 X 50, AFo = (AA7/cb?) = 0.02) is stable, even with @ = 0, when the algorithm constitutes a
direct solution method. When a sawtooth perturbation is imposed on the input data (Af = +5% fmayx), a
clearly defined instability appears in the calculation. A stable solution of this problem was found by the
method of the quasioptimum regularization parameter. In this case condition (16) was satisfied with o =
0.86.

NOTATION

C(T), specific heat at constant volume; A(T), thermal conductivity; k(T), filtration coefficient;
(T), distributed heat source (or sink); T, temperature; x, #, coordinate; t, T, time; h, integration
step along the spatial coordinate; Ar, integration step along the time; ¢(x) initial temperature distribu-
tion; q, heat flux; X, coordinate of boundary; f, input data; 6, error inthe specification of the input
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temperatures; Ty(r), temperature of outer surface; 7y, value of the time interval at the right-hand
boundary; o, regularization parameter.
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